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Task Objectives:

The objectives of this research were to (1) develop computer models for realistic simulations

of nucleation and crystal growth in glasses, which would also have the flexibility to accomodate

the different variables related to sample characteristics and experimental conditions, and (2)

design and perform nucleation and crystallization experiments using calorimetric measurements,

such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) to verify
these models.

The variables related to sample characteristics mentioned in (1) above include size of the

glass particles, nucleating agents, and the relative concentration of the surface and internal

nuclei. A change in any of these variables changes the mode of the transformation

(crystallization) kinetics. A variation in experimental conditions includes isothermal and

nonisothermal DSC/DTA measurements. Isothermal kinetic studies yield reasonably accurate

information about the mode of transformation and the activation energies of nucleation and

growth, but nonisothermal measurements have several advantages. The nonisothermal

measurements axe easier to perform and less time consuming, and they can probe the kinetics

of transformation over a different, generally higher, temperature range than is possible from

isothermal methods. However, the thermoanalytical models prsently used to analyze the

nonisothermal kinetic data are considered to be fundamentally flawed, since they are based on

erroneous assumptions for the temperature dependence of the effective rate constants, generally,

resulting in misinformation about the transformation processes. This research would lead to

develop improved, more realistic methods for analysis of the DSC/DTA peak profiles to

determine the kinetic parameters for nucleation and crystal growth as well as to assess the

relative merits and demerits of the thermoanalytical models presently used to study the phase

transformation in glasses.

The present research is a part of a collaborative research program supported by NASA

through two separate contracts. The experimental work is conducted at the University of

Missouri-Rolla (NASA Contract NAG8-898, PI: C. S. Ray) and the theoretical work is

conducted at the Washington University in St. Louis (NASA Contract NAGS-873, PI: K. F.

Kelton).

Benefit or Necessity of Microgravity:

Existing experimental evidences on solidification of glass forming melts in microgravity

point to the importance of investigating the kinetics of nucleation and crystallization in a more

generalized and realistic way. For example, glasses prepared in microgravity are reported to be

more chemically homogeneous and more resistant to crystallization than identical glasses
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prepared on earth. These results indicate that the size, number density, and distribution of

nuclei, and, hence, the nucleation mechanism, are different in glasses prepared in space and on

earth. To verify these apparently surprising observations, realistic thermoanalytical models as

well as experimental data on phase transformation in glasses prepared in space are needed.

Results to-Date:

1. Nucleation�Crystallization of Na_.2Cao.3Si02 (NC_Sj) Glass:

A previously developed experimental technique ¢z)which uses nonisothermal DSC/DTA and

which was justified theoretically by others _2'3), was used to determine the nucleation rate-

temperature like curve for the NCaS3 glass. In this technique, a small amount (-20 to 40 mg)

of relatively large glass particles (> 400/_m) are first nucleated in the DSC/DTA furnace at

different temperatures for an arbitrarily chosen time (typically 2 to 4 h) and then heated at a

selected rate (normally 15°C/min) until crystallization is complete. A plot of the inverse of the

temperature at the crystallization peak maximum, 1/Tp, or the height of the peak at Tp, (ST)p,

against the temperature, Tn, at which the glass particles are nucleated, yields a curve similar in

shape to that of the classical nucleation rate curve, I vs. T,. The values of (tST)_ and 1/Tp for the

NC2S3 glasses containing 0.1 wt% Pt, 0.5 wt% Ag20, or 2.0 wt% P2Os are shown in Fgs. 1 and

2 as a function of Tn along with the values for the NC2S3 base glass, which show that unlike the

lithium disilicate (LSz) glass, the (_T)p and 1/Tp plots as a function of T, for the NC2S3 glasses

do not agree with each other. For a better comparison of these two plots, see Figs. 3 and 4,

which are the normalized versions of Figs 1 and 2, respectively. For the LS2 glass, these two

plots not only agree with each other, they also agree with the I vs. T, curve for the LS2 glass

determined by classical method tin)and with the (ST)p vs. T, curve calculated through computer
simulation a,4).

As shown in Figs. 2 and 4, the plots of 1/T v vs. 1", are nearly the same for all the doped and

undoped NC2S3 glasses. The temperature range for nucleation, 545-665°C, and the temperature

for maximum nucleation, -595°C, determined from these plots (Figs 2 or 4) are also in

excellent agreement with those for the NC2S3 glass determined by conventional method _5).These

results suggest that the 1/Tp vs. T, plot correctly represents the I vs To curve for the NC2S3

glass, but the (tST)p vs. T, plot does not. The reason for this is attributed to an overlap between

the I and U (crystal growth rate) curves for this glass, which does not occur for the LS2 glass

where the I and U curves are separated. If a glass is nucleated at a temperature T where the I

and U curves overlap, part of the glass can crystallize and the total number of nuclei available

for further crystallization can decrease. This, in turn, will decrease (GT)p at all temperatures

within the region of overlap and, consequently, the temperature spread and the peak of the (5"l')p

curve on the temperature scale will be lower than what it would be in the absence of any overlap

between I and U. On the otherhand, 1/Tp depends primarily on the concentration of nuclei and

is independent of the previously described effect of overlap between I and U, provided the glass

does not crystallize completely during nucleation heat treatment.

2. Calculau'on of (_I),:
To verify the above conclusion that the shape of the (diT)p vs. T, curve depends upon the

overlap between I and U, calculations were made for a hypothetical glass at diffrent degrees of

overlap between two arbitrarily chosen I and U curves. The following equation

(b'T)p = KVIt [ 1 - (1/3)_rILPt 4 ] ......... (1)

that relates (tST)p with I and U was developed assuming (GT)p is linearly proportional to the total

number of nuclei present in the glass. Here, V is the volume of the sample, t is the time for

nucleation heat treatment prior to DTA scan, and K is a constant. When there is no overlap
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betweenI andU at the chosennucleationtemperature,the secondterm in eqn. 1 is zero, and
thefunctionaldependenceof (_T)ponT° is sameasthatof I onTo, suchaswhat is observedfor
theLS2glass.WhenI andU overlapat thetemperatureof nucleation,the secondterm in eqn.1
is no longerzero,and (b'T)pis smallerthanwhat it shouldbe in the absenceof overlap.

Thecalculatedvaluesof (b'T)pat differentdegreesof overlapbetweenI and U is shownin
Fig. 5 asa functionof nucleationtemperature.Fig. 5 showsthatthe spreadof the(_T)pvs. T,
curve on the temperatureaxisand the temperatureat the peak maximumboth decreasewith
increasingoverlapbetweenI andU. Comparingthesecurveswith the experimentalcurvesin
Fig. 4, it is clearthat a maximumoverlapbetweenI andU curvesoccurs for theNC2S3glass
which is dopedwith platinum. For the glassdopedwith P205,the overlapbetweenI and U is
evensmallerthanthat for theNCaS3baseglass.This result suggeststhatP20_in theNC2S3glass
doesnot act asa nucleatingagent,ratherit improvesglassformationin the NCaS3glass.
3. Dependence of (_T)p on DTA Scan Rate:

In crystallization measurements using DTA the glass sample is scanned at different constant

heating rates until it crystallizes. This means that the temperature range where nucleation can

occur is scanned also at different rates, which allows the glass to be nucleated for different time

prior to crystallization. Consequently, the concentration and, hence, the total number nuclei in

the glass sample may be different when scanned at different rates, which may cause a change

in the DTA peak height and the temperature at the peak maximum.

The effect of nucleation heating rate on the (_T)p was investigated using a LS2 glass. Since

the nucleation temperature for LS2 glass ranges from 400 to 500°C, the glass sample was first

heated at a high heating rate (-100°C/min) from room temperature to about 400°C. After

stabilizing at 400°C for a brief period of time (3 to 5 min), the sample was heated to 500°C

using constant different heating rates (Nucleation Heating Rate, _,: 0.5, 1, 2, 4, 6, 10, or

15°C/min) and then heated at a constant 15°C/rain heating rate until the crystallization

completed. The particle size and the amount of glass sample were kept unchanged for different

measurements.

The DTA crystallization peak height, (ST)p, for the LS2 glass obtained at a constant

crystallization heating rate, 15°C/min, is shown in Fig. 6 as a function of nonisothermal

nucleation heating rate, _, (solid circles). The (ST)p decreases initially with increasing _b,

indicating the formation of a less number of nuclei as the nucleation temperature zone for this

glass is scanned at a higher heating rate. This is what is expected since with increasing heating

rate, the glass is allowed to nucleate for a shorter average time, which results in forming a less

number of nuclei. No appreciable change in (ST) v for this glass is observed when ¢° exceeds

about 3°C/min, which suggests that for a heating rate > 3°C/rain an embryo in the LSz glass

does not get sufficient time to form a critical size nucleus. This critical value of 0n could be

important for many practical reasons, since it ensures a heating rate above which no new nuclei

form in a glass.

Also shown in Fig. 6 (open squres) are the values of (_T)p for the LS2 glass measured

previously _1_ by isothermal nucleation at 453°C (temperature for maximum nucleation rate)

followed by crystallization at the same 15°C/rain heating rate. Interestingly, the (b'T)p-value of

a sample nucleated isothermally at the maximum nucleation rate temperature for a particular

time, t, is in excellent agreement with that of the sample nucleated nonisothermally at a rate that

requires the same time t to scan the temperature zone for nucleation. For example, the

temperature range for nucleation for the LS2 glass is - 75°C (425 to 500°C), and it takes - 150

min to scan this region at a Cn of 0.5°C/min. An equal amount of sample with same particle size

of this LSz glass yields nearly the same peak height when nucleated either nonisothermally at
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0.5°C/rainor isothermallyat 453°Cfor 150min followed by crystallizationat 15°C/min.
4. Nucleation Rate Curve for the LS_ Glass by Dielectric Constant Measurements:

Since the dielectric constant of a material depends, in part, on crystallinity of the sample

and, hence, upon the concentration of nuclei prior to crystallization, attempts were made to

determine the nucleation rate-temperature like curve for a LSz glass by dielectric constant

measurements. Glass samples, - 1 mm thick, were nuleated isothermally at different

temperatures for 3 h and then crystallized at 660°c for 15 rain. Both surfaces of the crystallized

samples were polished with 1/_m alumina powder and then coated with gold in vacuum. The

dielectric constant, _, and the tan_ loss of the samples were measured at 1 kHz using a HP-4270

automatic capacitance bridge. Both E and tan6 decrease initially and then increase with increasing

nucleation temperature, yielding a minima at about 450°C which is close to 453"C temperature

for the maximum nucleation rate of this LS2 glass. A plot of 1/E against the nucleation

temperature is shown in Fig. 7, the shape of which closely resembles that of the classical

nucleation rate curve for the LS2 glass. This technique (measuring e and tan_), thus, appears to

be a feasible one for determining the temperature range for nucleation and the temperature for

maximum nucleation in a glass.
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Present and Future Work:

1. Effect of DTA scan rate on nucleation for the NC2S3 glass.

2. Dependence of DTA peak height and peak temperature on particle size of the LS2 glass with

and without nucleating agents.

3. Estimation of nucleation rate, I, at different temperatures from (ST)p vs. T_ plots for the LS2

glass.

4. Study the usefulness of a recently developed technique for determining the nucleation rate-

temperature like curves from dielectric constant and tan_i loss measurements using other

glasses such as Na20.2SiO2 and Bao.2SiO2.
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Fig. 1: DTA peak height for the NC2S3 glass

containing different dopants as a function

of T, for 3 h.

Fig.2: Inverse of DTA peak temperature for

the NC2S3 glass containing different dopants

as a function of T. for 3 h.

For both figures: crystallization heating rate, 15°C/min; particle size, 425-500 /zm; sample

weight, 30 rag. o, base glass; e, o. 1 wt% Pt; =, 0.5 wt% Ag20; -, 2.0 wt% P205.
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